Главная Контакты Найти нас
Тренажерный зал
Аэробный зал
Наши инструкторы
Спортивное питание
Расписание
Инфракрасная сауна
Турбо Солярий
Вакансии
Цены

mylektsii.ru

2.4. Аминокислотный состав белков

С химической точки зрения белки - это вы­сокомолекулярные азотсодержащие органические соединения (полиамиды), молекулы которых построены из остатков аминокислот. Мономерами белков служат α-аминокислоты, общим признаком которых является наличие карбок­сильной группы -СООН и аминогруппы -Nh3 у второго углеродного атома (α-углеродный атом):

Аминокислоты классифицируют: - по полярности радикалов на полярные (гидрофильные) и непо­лярные (гидрофобные);

- по природе радикалов на алифатические (глицин, аланин, валин, лейцин, изолейцин); гидроксиаминокислоты (серии, треонин); дикарбоновые, кислые, (аспарагиновая, глутаминовая и их амиды - аспарагин и глутамин); тиоаминокислоты (цистеин, метионин); диаминомонокарбоновые, щелочные (ли­зин, аргинин); ароматические (фенилаланин, тирозин); гетероцикличе­ские (триптофан, гистидин, пролин).

В настоящее время известно более 200 аминокислот, сущест­вующих в природе. В организме человека содержится около 60 различ­ных аминокислот и их производных. В белках же всех видов живых су­ществ - от бактерий до человека - обнаруживают менее 30 из них.

Эти аминокислоты делят на две группы: постоянно встречающиеся в белках (главные) и иногда встречающиеся (редкие). К первой группе относят 20 аминокислот (в том числе и пролин, который, по существу, является иминокислотой) (табл.4).

Таблица 4. Аминокислоты, постоянно встречающиеся в составе белков

Аминокислотный состав белков


Аминокислотный состав белков

Строение и функции белков. Ферменты

Строение белков

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот;неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называютпростыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называютсложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–Nh3), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называютпептидной. В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованиюполипептидов. На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Не нашли то, что искали? Воспользуйтесь поиском:

Page 2

По типу катализируемых химических превращений ферменты разделены на 6 классов:

1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),

2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),

3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),

4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С–С, С–N, С–О, С–S — декарбоксилаза),

5. изомеразы (внутримолекулярная перестройка — изомераза),

6. лигазы (соединение двух молекул в результате образования связей С–С, С–N, С–О, С–S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

Не нашли то, что искали? Воспользуйтесь поиском:

studopedia.ru

Аминокислотный состав белков

Предыдущая123456789Следующая

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называютсложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–Nh3), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают:нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Примеры незаменимых кислот : валин, лейцин, изолейцин, триптофан.

3)Пищевая ценность белков, аминокислотный скор.

Пищевая ценность белков.

Белки относятся к жизненно необходимым веществам, без которых невозможны жизнь, рост и развитие организма. В процессе жизнедеятельности происходят распад и обновление белковых компонентов клеток. Для поддержания этих процессов организму необходимо ежедневно поступление полноценного белка с пищей. Белок входит в состав ядра и цитоплазмы клеток.

Белки выполняют целый ряд важнейших функций в организме.

* Пластическая функция. Белки (протеины) необходимы каждой клетке организма. Белки – структурная основа всех тканей организма. Это основной материал для построения растущих и воспроизводства разрушающихся тканей – от мышц и костей, до волос и ногтей. Такие структурные белки, как коллаген и кератин, служат главными компонентами костной ткани, волос и ногтей. Сократительные белки мышц обладают способностью изменять свою длину, используя химическую энергию для выполнения механической работы.

*Гормональная функция. Гормоны, регулирующие физиологические процессы, тоже являются белками. Одним из наиболее известных белков-гормонов является инсулин. Этот простой белок состоит только из аминокислот. Функциональная роль инсулина многопланова. Он снижает содержание сахара в крови, способствует синтезу гликогена в печени и мышцах, увеличивает образование жиров из углеводов, влияет на обмен фосфора, обогащает клетки калием. Регуляторной функцией обладают белковые гормоны гипофиза - железы внутренней секреции, связанной с одним из отделов головного мозга. Он выделяет гормон роста, при отсутствии которого развивается карликовость. Этот гормон представляет собой белок с молекулярной массой от 27000 до 46000.Также одним из важных и интересных в химическом отношении гормонов является вазопрессин. Он подавляет мочеобразование и повышает кровяное давление.

*Ферментативная функция. Белки в виде ферментов, катализирующих химические реакции, участвуют в регуляции многих обменных процессов и совершенно необходимы для нормального обмена самих белков и других пищевых веществ, в частности, углеводов, жиров, минералов, витаминов. Витамины, например, при недостатке белков не усваиваются организмом. Белковая пища помогает усвоению кальция, в то время как снижение уровня белка в пище ухудшает всасываемость этого элемента слизистой кишечника. Усвоение питательных веществ в организме возможно только в присутствии определенных ферментов. А ферменты – это белковые структуры, и соответственно недостаток белка приведет к серьезным нарушениям в питании организма.

*Защитная функция. К белкам относятся антитела, которые связывают, нейтрализуют и способствуют выведению токсичных веществ из организма. Дефицит белка в питании уменьшает устойчивость организма к инфекциям, так как снижается уровень образования антител. Нарушается синтез и других защитных факторов — лизоцима, иммуноглобулина, из-за чего обостряется течение воспалительных процессов. Белковыми веществами являются все факторы свертывающей и противосвертывающей системы.

*Транспортная функция. Белки участвуют в транспорте кровью липидов, углеводов, некоторых витаминов, гормонов, лекарственных веществ. Это прежде всего гемоглобин, переносящий кислород из легких к клеткам. В мышцах эту функцию берет на себя еще один транспортный белок - миоглобин. Многие белки, расположенные внутри клетки и на клеточной мембране, выполняют регуляторную, транспортную функцию распределения некоторых веществ, минеральных солей и витаминов между клеткой и межклеточным пространством. Поддержание водного баланса в тканях. Белки участвуют в распределении жидкости между внутри– и внеклеточной средой в организме. При дефиците белка вода не удерживается в клетках и переходит в межклеточную жидкость.

*Энергетическая функция. Хотя белки и не служат главным источником энергии, тем не менее они при определенных условиях могут выполнять эту функцию. Это происходит тогда, когда использование двух других источников энергии – углеводов и жиров затруднено, как, например, при голодании или на несбалансированных диетах. Однако, в качестве энергетической субстанции белки очень не выгодны и требуют большое количество энергии на свое усвоение и синтез, а также на вывод азота, входящего в их состав. Некоторые белки, способные реагировать на внешние воздействия (свет, запах) и служат в органах чувств рецепторами, воспринимающими раздражение. Белки входит в состав хромосом, обеспечивая нормальную работу ДНК – носителя наследственности. С другой стороны, в генах – участках ДНК – закодированы не просто наследственные признаки сами по себе, а состав белков, которые синтезируются организмом.

Недостаток белков в питании вызывает серьезные нарушения в организме: у детей замедляются рост и развитие, у взрослых возникают глубокие изменения в печени (жировая инфильтрация), а при длительной недостаточности — даже цирроз, нарушение деятельности желез внутренней секрецию (щитовидная, половые, поджелудочная), изменяется белковый состав крови, снижается устойчивость организма к инфекционным заболеваниям, страдает умственная деятельность человека — снижается память, нарушается работоспособность.

Наряду с этим установлено, что избыточное поступление белков неблагоприятно отражается на функции многих органов и систем организма, в частности при этом перегружаются ферментные системы и в крови накапливаются продукты неполного метаболизма, повышается количество мочевины, свободных аминокислот и т. д.

Аминокислотный скор – это показатель отношения определенной незаменимой аминокислоты в каком-то продукте к такой же аминокислоте в искусственном идеальном белке. (Идеальный белок представляет собой такое соотношение незаменимых аминокислот, которое позволяет организму без проблем обновлять те или иные внутренние структуры.) Рассчитывается аминокислотный скор путем деления количества определенной незаменимой аминокислоты в продукте на количество такой же аминокислоты в идеальном белке. Полученные данные затем умножают на 100 и получают аминокислотный скор исследуемой аминокислоты.

4)Первичная структура молекулы белка. Образование пептидной связи.

Первичная структура – цепочка из аминокислот, связанных пептидной связью (сильной, ковалентной). Чередуя 20 аминокислот в разном порядке, можно получать миллионы разных белков. Если поменять в цепочке хотя бы одну аминокислоту, строение и функции белка изменятся, поэтому первичная структура считается самой главной в белке.

Пептидная связь — вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (—Nh3) одной аминокислоты с α-карбоксильной группой (—СООН) другой аминокислоты.

Из двух аминокислот (1) и (2) образуется дипептид (цепочка из двух аминокислот) и молекула воды. По этой же схемерибосома генерирует и более длинные цепочки из аминокислот: полипептиды и белки. Разные аминокислоты, которые являются «строительными блоками» для белка, отличаются радикалом R.

Предыдущая123456789Следующая

№ п/п

Название

Структура

Сокращенное обозначение русское,

латинское

pI

1

2

3

4

5

I. Неполярные(гидрофобные) аминокислоты

1.

Аланин

Ала, Ala

6,02

2.

Валин

Вал, Val

5,97

3.

Лейцин

Лей, Leu

5,98

4.

Изолейцин

Иле, Ile

6,02

5.

Триптофан

Три, Try

5,88

6.

Пролин

(иминокислота)

Про, Pro

6,10

7.

Фенилаланин

Фен, Phe

5,98

8.

Метионин

Meт, Met

5,75

1

2

3

4

5

II. Полярные (гидрофильные) незаряженные аминокислоты

9.

Глицин

Гли, Gly

5,97

10.

Серин

Сер, Ser

5,68

11.

Треонин

Тре, Thr

6,53

12.

Цистеин

Цис, Cys

5,02

13.

Тирозин

Тир, Tyr

5,65

14.

Аспарагин

Асн, Asn

5,41

15.

Глутамин

Гли,Gln

5,65

1

2

3

4

5

III. Отрицательно заряженные (кислые) аминокислоты

16.

Аспарагиновая

кислота

(Аспартат)

Асп, Asp

2,95

17.

Глутаминовая

кислота

(Глутамат)

Глу, Glu

3,22

IV. Положительно заряженные (основные) аминокислоты

18.

Лизин

Лиз, Lys

9,74

19.

Аргинин

Арг, Arg

10,76

20.

Гистидин

Гис, His

7,58

К группе редко встречающихся аминокислот принадлежат, на­пример, гидроксипролин, гидроксилизин, орнитин, йодтирозин, α-аминоизомасляная кислота и некоторые другие. Они имеют следующее строение:

α-аминоизомасляная

кислота

гидроксипролин

орнитин

йодтирозин

гидроксилизин

Эти аминокислоты образуются из главных уже после включения их в состав белковой молекулы.

studfiles.net

Яичный белок — содержание аминокислот

Вес порции, г { { Поштучно { { В стаканах { {

1 шт — 33,0 г2 шт — 66,0 г3 шт — 99,0 г4 шт — 132,0 г5 шт — 165,0 г6 шт — 198,0 г7 шт — 231,0 г8 шт — 264,0 г9 шт — 297,0 г10 шт — 330,0 г11 шт — 363,0 г12 шт — 396,0 г13 шт — 429,0 г14 шт — 462,0 г15 шт — 495,0 г16 шт — 528,0 г17 шт — 561,0 г18 шт — 594,0 г19 шт — 627,0 г20 шт — 660,0 г21 шт — 693,0 г22 шт — 726,0 г23 шт — 759,0 г24 шт — 792,0 г25 шт — 825,0 г26 шт — 858,0 г27 шт — 891,0 г28 шт — 924,0 г29 шт — 957,0 г30 шт — 990,0 г31 шт — 1 023,0 г32 шт — 1 056,0 г33 шт — 1 089,0 г34 шт — 1 122,0 г35 шт — 1 155,0 г36 шт — 1 188,0 г37 шт — 1 221,0 г38 шт — 1 254,0 г39 шт — 1 287,0 г40 шт — 1 320,0 г41 шт — 1 353,0 г42 шт — 1 386,0 г43 шт — 1 419,0 г44 шт — 1 452,0 г45 шт — 1 485,0 г46 шт — 1 518,0 г47 шт — 1 551,0 г48 шт — 1 584,0 г49 шт — 1 617,0 г50 шт — 1 650,0 г51 шт — 1 683,0 г52 шт — 1 716,0 г53 шт — 1 749,0 г54 шт — 1 782,0 г55 шт — 1 815,0 г56 шт — 1 848,0 г57 шт — 1 881,0 г58 шт — 1 914,0 г59 шт — 1 947,0 г60 шт — 1 980,0 г61 шт — 2 013,0 г62 шт — 2 046,0 г63 шт — 2 079,0 г64 шт — 2 112,0 г65 шт — 2 145,0 г66 шт — 2 178,0 г67 шт — 2 211,0 г68 шт — 2 244,0 г69 шт — 2 277,0 г70 шт — 2 310,0 г71 шт — 2 343,0 г72 шт — 2 376,0 г73 шт — 2 409,0 г74 шт — 2 442,0 г75 шт — 2 475,0 г76 шт — 2 508,0 г77 шт — 2 541,0 г78 шт — 2 574,0 г79 шт — 2 607,0 г80 шт — 2 640,0 г81 шт — 2 673,0 г82 шт — 2 706,0 г83 шт — 2 739,0 г84 шт — 2 772,0 г85 шт — 2 805,0 г86 шт — 2 838,0 г87 шт — 2 871,0 г88 шт — 2 904,0 г89 шт — 2 937,0 г90 шт — 2 970,0 г91 шт — 3 003,0 г92 шт — 3 036,0 г93 шт — 3 069,0 г94 шт — 3 102,0 г95 шт — 3 135,0 г96 шт — 3 168,0 г97 шт — 3 201,0 г98 шт — 3 234,0 г99 шт — 3 267,0 г100 шт — 3 300,0 г

1 ст — 243,0 г2 ст — 486,0 г3 ст — 729,0 г4 ст — 972,0 г5 ст — 1 215,0 г6 ст — 1 458,0 г7 ст — 1 701,0 г8 ст — 1 944,0 г9 ст — 2 187,0 г10 ст — 2 430,0 г11 ст — 2 673,0 г12 ст — 2 916,0 г13 ст — 3 159,0 г14 ст — 3 402,0 г15 ст — 3 645,0 г16 ст — 3 888,0 г17 ст — 4 131,0 г18 ст — 4 374,0 г19 ст — 4 617,0 г20 ст — 4 860,0 г21 ст — 5 103,0 г22 ст — 5 346,0 г23 ст — 5 589,0 г24 ст — 5 832,0 г25 ст — 6 075,0 г26 ст — 6 318,0 г27 ст — 6 561,0 г28 ст — 6 804,0 г29 ст — 7 047,0 г30 ст — 7 290,0 г31 ст — 7 533,0 г32 ст — 7 776,0 г33 ст — 8 019,0 г34 ст — 8 262,0 г35 ст — 8 505,0 г36 ст — 8 748,0 г37 ст — 8 991,0 г38 ст — 9 234,0 г39 ст — 9 477,0 г40 ст — 9 720,0 г41 ст — 9 963,0 г42 ст — 10 206,0 г43 ст — 10 449,0 г44 ст — 10 692,0 г45 ст — 10 935,0 г46 ст — 11 178,0 г47 ст — 11 421,0 г48 ст — 11 664,0 г49 ст — 11 907,0 г50 ст — 12 150,0 г51 ст — 12 393,0 г52 ст — 12 636,0 г53 ст — 12 879,0 г54 ст — 13 122,0 г55 ст — 13 365,0 г56 ст — 13 608,0 г57 ст — 13 851,0 г58 ст — 14 094,0 г59 ст — 14 337,0 г60 ст — 14 580,0 г61 ст — 14 823,0 г62 ст — 15 066,0 г63 ст — 15 309,0 г64 ст — 15 552,0 г65 ст — 15 795,0 г66 ст — 16 038,0 г67 ст — 16 281,0 г68 ст — 16 524,0 г69 ст — 16 767,0 г70 ст — 17 010,0 г71 ст — 17 253,0 г72 ст — 17 496,0 г73 ст — 17 739,0 г74 ст — 17 982,0 г75 ст — 18 225,0 г76 ст — 18 468,0 г77 ст — 18 711,0 г78 ст — 18 954,0 г79 ст — 19 197,0 г80 ст — 19 440,0 г81 ст — 19 683,0 г82 ст — 19 926,0 г83 ст — 20 169,0 г84 ст — 20 412,0 г85 ст — 20 655,0 г86 ст — 20 898,0 г87 ст — 21 141,0 г88 ст — 21 384,0 г89 ст — 21 627,0 г90 ст — 21 870,0 г91 ст — 22 113,0 г92 ст — 22 356,0 г93 ст — 22 599,0 г94 ст — 22 842,0 г95 ст — 23 085,0 г96 ст — 23 328,0 г97 ст — 23 571,0 г98 ст — 23 814,0 г99 ст — 24 057,0 г100 ст — 24 300,0 г

fitaudit.ru

Аминокислотный состав белков

Строение и функции белков. Ферменты

Строение белков

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–Nh3), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называютпептидной. В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованиюполипептидов. На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Дата добавления: 2016-03-20; просмотров: 1686; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЕЩЕ:

helpiks.org

Аминокислотный состав белков

Структурным компонентом белковой молекулы является аминокислота. Аминокислотами называются органические кислоты, содержащие одну или несколько аминогрупп. В зависимости от положения аминогруппы по отношению к карбоксилу различают α-, β- и γ-аминокислоты:

α-аминомасляная β-аминопропионовая γ-аминомасляная

Все аминокислоты, за исключением глицина, имеют хиральный (асимметричный) центр, вследствие чего обладают оптической активностью. Хиральный центр ‒ атом углерода аминокислоты (у протеиногенных аминокислот это α-углерод), при котором имеются 4 разных заместителя:

  1. радикал аминокислоты (-R);

  2. карбоксильная группа (-СООН);

  3. аминогруппа (-Nh3);

  4. атом водорода (-Н).

Конфигурация при асимметрическом углероде с максимальным номером определяет принадлежность к D- (аминогруппа справа) или L- (аминогруппа слева) ряду подобно тому, как в пространстве располагаются заместители у глицеринового альдегида. Аминокислоты, имеющие асимметрию, сходную с D-глицеральдегидом, относят к D-аминокислотам, аминокислоты, имеющие асимметрию, сходную с L-глицеральдегидом – к L-аминокислотам.

L-аминокислотаD-аминокислота

D- и L-изомеры ‒ зеркальные изомеры соответствующей аминокислоты, называемые энантиомерами. Рацемическая смесь ‒ смесь энантиомеров в равных мольных долях, не обладающая оптической активностью. D-изомеры аминокислот сладкие, L-изомеры ‒ горькие или безвкусные. В составе белков млекопитающих имеются только L-изомеры. D-изомеры, наряду с L-изомерами, встречаются только у некоторых бактерий.

Химические свойства аминокислот

Поскольку аминокислоты имеют в своем составе как кислотную, так и основную группы, они способны реагировать и с кислотами, и с основаниями. Аминокислоты являются амфотерными органическими соединениями. В определенных условиях (например, при воздействии определенных ферментов) аминокислоты способны реагировать друг с другом. Связь, которой соединены остатки аминокислот, называется пептидной, а соединение, состоящее из двух остатков аминокислот, – дипептидом. Трипептиды, тетрапептиды и т.д. – полипептиды.

Дипептид

Как уже отмечалось, аминокислоты являются амфотерными соединениями, т.к. как содержат и кислотный (-COOH), и основной (-Nh3) центры. Следовательно, в нейтральной и близкой к ней среде они существуют в виде внутренних солей (биполярных ионов, или цвиттер-ионов).

Кроме того, некоторые аминокислоты содержат в радикале дополнительные функциональные группы, способные к ионизации.

Основные аминокислоты в водном растворе дают щелочную реакцию и несут положительный заряд:

Кислые аминокислоты в водном растворе проявляют кислотные свойства и обладают отрицательным зарядом:

На диссоциацию аминокислот оказывает влияние pH среды. В очень кислых растворах группа -Nh3 протонирована полностью, а COOH-группа практически не ионизирована. В сильно щелочных растворах ‒ наоборот: при значениях pH от 4 до 9 каждая из диссоциирующих групп находится в равновесии со своей неионизированной формой, а обе группы вместе находятся в равновесии с биполярным ионом:

Катионная форма

Биполярный ион (амфиион)

Анионная форма

сильно кислая среда

(рН < 5)

сильно щелочная среда (рН > 9)

Амфотерные свойства аминокислот проявляются и в их способности образовывать соли, реагируя как с кислотами, так и с основаниями:

Еще одним проявлением амфотерности является способность аминокислот образовывать окрашенные растворимые комплексные соединения с Cu2+:

Если сумма зарядов на аминокислоте равна нулю, то значение рН носит название изоэлектрической точки (pI).

При нагревании в сухом виде различные аминокислоты ведут себя по разному. Так, α-аминокислоты образуют циклические дипептиды ‒ дикетопиразины:

В отличие от них, β-аминокислоты претерпевают дезаминирование:

СН3-СН2-СН(Nh3)-Ch3-COOH → СН3-СН=СН-Ch3-COOH + Nh4

γ-аминокислоты превращаются в циклические внутримолекулярные пептиды ‒ лактамы:

Аминокислоты хорошо растворимы в воде, малорастворимы в органических растворителях; хорошо кристаллизуются; имеют высокую плотность и исключительно высокую температуру плавления. Эти свойства указывают на взаимодействие аминных и кислотных групп, вследствие чего аминокислоты в твёрдом состоянии и в растворе (в широком интервале рН) находятся в цвиттер-ионной форме. Взаимное влияние групп особенно ярко проявляется у α-аминокислот, где обе группы находятся в непосредственной близости.

studfiles.net

3. Аминокислотный состав белков

Для определения аминокислотного состава белки подвергают гидролизу.

В состав белков входят 20 L--аминокислот: глицин, аланин, валин, лейцин, серин, глутаминовая кислота, глутамин, лизин, аргинин, пролин, аспарагиновая кислота, аспарагин, изолейцин, треонин, фенилаланин, тирозин, цистеин, метионин, гистидин, триптофан и некоторые производные этих аминокислот, образующиеся в белковой молекуле после матричного синтеза полипептидной цепи.

Частота, с какой аминокислоты встречаются в белках, неодинакова. Например, глицин обнаруживается в 10 раз чаще, чем триптофан. По частоте нахождения аминокислот в белках можно составить такой ряд: ала  вал  лей  сер  глу  глн  лиз  арг  про > асп  асн  изо  тре  фен > тир  цис  мет  гис.

Большинство белков по аминокислотному составу отличаются не очень резко. Но некоторые белки с особыми свойствами отличаются и аминокислотным составом. Так, белок соединительной ткани коллаген на 1/3 построен из остатков глицина, около 1/5 на ост. пролина и оксипролина. Именно такой состав аминокислот позволяет готовой молекуле белка образовывать прочные олигомерные структуры - фибриллы. Фибриллы коллагена превосходят по прочности стальную проволоку равного поперечного сечения. При кипячении в воде нерастворимый коллаген превращается в желатину - растворимую смесь полипептидов. Необычный аминокислотный состав коллагена определяет его низкую питательную ценность. В состав связок и соединительной ткани стенок сосуда входит белок - эластин. Эластин богат остатками лизина. Четыре боковые группы лизина сближаются друг с другом и ферментативным путем превращаются в десмозин.

Таким путем полипептидные цепи эластина могут объединяться в системы, способные обратимо растягиваться во всех направлениях.

В хромосомах содержатся положительно заряженные белки гистоны, примерно на 1/3 построенные из остатков лизина и аргинина. Положительный заряд молекулы белка позволяет образовывать прочные комплексы с отрицательно заряженными молекулами нуклеиновых кислот

  1. Классификация аминокислот по характеру бокового радикала.

  1. ациклические аминокислоты (глицин, аланин,валин,лейцин,изолейцин)

  2. алифатические замещенные аминокислоты :

а) гидроксиаминокислоты: серин, треонин

б)тиоаминокислоты: цистеин, метионин

в) карбоксиаминокислоты: аспарагиновая кислота, глутаминовая кислота

г)амиды карбоксикислоты: аспарагин глутами.

д)диаминкислоты: лизин

е) гуанидиноаиногкислты: аргнин

3. циклические аминокислоты

а) гомоциклические: фенилаланин, тирозин

б) гетероциклические: гистидин триптофан

в) цикические амнокислоты: пролин

5.Классификация аминокислот в соответствии с полярностью их r-групп.

1. неполярные R-группы: аланин, изолейцин, лейцин, метионин, пролин, триптофан, фенилаланин

2. полярные, но незаряженные: аспарагин, глицин, глутамин, серин, тирозин, треонин, цистеин.

3. отрицательно заряженные: аспарагиновая кислота, глутаминовая кислота

4. положительно заряженная: аргинин, гистидин, лизин.

    1. Физико-химические свойства белков (амфотерность, стереоизомерия).

На физических свойствах белков, таких как ионизация, гидратация, растворимость основаны различные методы выделения и очистки белков.

Так как белки содержат ионогенные, т.е. способные к ионизации аминокислотные остатки (аргинин, лизин, глутаминовая кислота и т.д.), следовательно, они представляют собой полиэлектролиты. При подкислении степень ионизации анионных групп снижается, а катионных - повышается, при подщелачивании наблюдается обратная закономерность. При определенном рН число отрицательно и положительно заряженных частиц становится одинаковым, такое состояние называется изоэлектрическим (суммарный заряд молекулы равен нулю). Значение рН, при котором белок находится в изоэлектрическом состоянии, называют изоэлектрической точкой и обозначают рI. На различной ионизации белков при определенном значении рН основан один из методов их разделения - метод электрофореза.

Полярные группы белков (ионогенные и неионогенные) способны взаимодействовать с водой, гидратироваться. Количество воды, связанное с белком достигает 30-50 г на 100 г белка. Гидрофильных групп больше на поверхности белка. Растворимость зависит от количества гидрофильных групп в белке, от размеров и формы молекул, от величины суммарного заряда. Совокупность всех этих физических свойств белка позволяет использовать метод молекулярных сит или гель-фильтрацию для разделения белков. Метод диализа используется для очистки белков от низкомолекулярных примесей и основан на больших размерах молекул белка.

Растворимость белков зависит и от наличия других растворенных веществ, например, нейтральных солей. При высоких концентрациях нейтральных солей белки выпадают в осадок, причем для осаждения (высаливания) разных белков требуется разная концентрация соли. Это связано с тем, что заряженные молекулы белка адсорбируют ионы противоположного заряда. В результате частицы теряют свои заряды и электростатическое отталкивание, в результате происходит осаждение белка. Методом высаливания можно фракционировать белки.

studfiles.net


Смотрите также




Логин
Пароль
Регистрация
Забыли пароль?
[ 2 июня 2012 ]   Кружок пауэрлифтинга и жима лежа
    В нашем клубе успешно начал работу "кружок" пауэрлифтинга и жима лёжа. Наши члены кружка успешно выступили и завоевали призовые места на прошедшем 26-27 мая чемпионате Приволжского Федерального Округа по пауэрлифтингу и жиму лёжа. Мы с радостью приглашаем всех желающих в наш коллектив. Начало работы кружка суббота в 14-30.

[ 5 октября 2012 ]   Как вести себя в тренажерном зале
    Посещение нового тренажерного зала – превосходный способ улучшить собственную мотивацию и режим занятий. Однако спортзал иногда пугает тех, кто никогда ранее в него не ходил. Причем касается это не одних лишь новичков. Даже бывалые члены спортивных клубов иногда пребывают в замешательстве от множества неизвестных им тренажеров и множества накачанных людей. Мы поможем вам и дадим несколько советов, которые помогут вам ощущать себя в тренажерном зале рискованнее.

[ 12 апреля 2012 ]   Советы новичкам. Собираемся в тренажерный зал.
    Вы взяли себя в руки и с завтрашнего дня начинаете ходить в спортзал? Отлично! Вам следует учесть некоторые нюансы.

  Содержание, карта сайта.